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The dynamics of carangiform swimming motions 
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(Received 26 July 1977) 

An investigation based on the elongated-body theory of Lighthill (1 960, 1 970) and 
Wu (1971) is made of the carangiform swimming motions of fish, a mode of propulsion 
in which the amplitude of body undulation becomes significant only in the posterior 
half, or even third, of the length of the fish and the anterior part is relatively inflexible. 
For typical slender fish performing undulatory swimming motions, three hydro- 
dynamic features are taken into account: ( a )  the resistance to the lateral undulatory 
motions as well as longitudinal (tangential) frictional resistance, ( b )  the forces' of 
interaction with the water associated with its inertial (virtual-mass) response to the 
lateral motions of the fish and ( c )  the reaction forces due to the vortex sheets shed 
from sharp trailing edges to the rear of the section of maximum span (depth), where 
a great variety of fins are generally found. 

The active tail oscillations give rise to oscillatory side forces, to which the remainder 
of the body responds passively. These passive yawing motions are studied to find their 
amplitude, the yawing axis and any associated energy dissipation. The contribution 
of each of the above three forces is examined and the effects of the oscillation fre- 
quency, a slenderness parameter 6 of the body, and the shape of the transverse cross- 
sections are considered. 

The present theory is further applied to predict the turning movement when the 
fish changes direction, the way in which the above forces act during this process being 
investigated. A small perturbation analysis relative to a uniform rectilinear motion 
not only reveals whether or not the motion is dynamically stable, but also leads to a 
full description of the motion that follows a given initial perturbation. For finite 
perturbations a numerical method is adopted to find the time development of both 
the direction of motion relative to the direction of the initial uniform motion and the 
ratio of the kinetic energy of the body to the initial kinetic energy for different magni- 
tudes 1, of the initial impulsive perturbation in the transverse direction. The final 
angle of turn is obtained in terms of I, for different values of 6. The loss of kinetic 
energy during the turn divided by the initial kinetic energy is found to be very small 
for a small angle of turn. 

Detailed analyses are made for rigid fish models in which the distribution of depth 
(or span) along the body length is quadratic with a maximum at the centre. Agreement 
of the present analyses with observations is fairly good at  least qualitatively and some 
quantitative estimates are made of the side forces, both oscillatory and impulsive, 
exerted on the body by the tail. It is found that the vortex sheets shed from trailing 
edges increase the energy loss due to the yawing oscillations, in addition to the resis- 
tive dissipation, but contribute to the directional stability of rectilinear motion. 

t Present address : Department of Applied Science, Faculty of Engineering, Kyushu 
University, Fukuoka 812, Japan. 
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1. Introduction 
The swimming modes of fishes may be divided into two main classes, anguilliform 

and carangiform, with a few exceptions (Lighthill 1969). In the anguilliform mode of 
swimming the whole body is flexible and the amplitude of the propulsive wave, which 
travels from head to tail, is significant all along the fish’s length, although it increases 
towards the tail. In  carangiform swimming, by contrast, the amplitude of undulation 
becomes significant only in the posterior half, or even third, of the length of the fish 
and the anterior part is relatively inflexible. The carangiform mode is found in fishes 
in classes of advanced orders which are strong, active swimmers, achieving high hydro- 
mechanical efficiency (Lighthill 1970). They propel themselves primarily by active 
tail oscillations, to which the remainder of the body responds passively. 

According to Lighthill (1970)) two characteristics of the morphology of carangiform 
swimmers have the function of reducing these recoil motions. A long anterior region 
of high depth is important because it responds to the side forces associated with the 
thrusting oscillatory movement as if its inertia were augmented by the virtual mass 
(also called the added mass) of water associated with its lateral motion. The yawing 
response is diminished in the presence of a large moment of inertia. Equally important 
is the presence of a region of greatly reduced depth (the caudal peduncle) between the 
actively thrusting caudal fin and the passively responding anterior portion. 

A fish-like body is typically slender in the spanwise (depth) direction compared with 
its length I and of yet smaller thickness in the lateral direction. The slenderness para- 
meter &, defined as sm/l (s, being the maximum depth), is about 0.4-0.2 if the body 
depth is measured with the dorsal and ventral fins extended (Wu 1971). In  general 
the transverse cross-sections of the body are more or less elliptical, with a ratio u of 
the minor to the major axis of around 0.6 for some slightly compressed species, and 
have rather rounded edges anterior to the section of widest span, becoming lenticular 
in shape in the posterior part of body, where there are a great variety of dorsal, ventral 
and other fins, followed by a tail-base neck just ahead of the caudal fin. 

Lighthill (1 960) investigated the swimming of a slender fish performing movements 
transverse to its direction of motion. From ‘elongated-body ’ theory, he obtained the 
propulsive thrust produced by the movement and its time rate of working. There 
exist some slender fishes of the ‘ribbon-fin ’ type whose transverse cross-section to the 
rear of the section of maximum span is of a lenticular shape with sharp edges, like 
those of spiny fins, from which an oscillating vortex sheet is shed. An important 
extension of Lighthill’s (1 960) theory was made by Wu (1 971) to determine the effect 
of the vortex-sheet shedding on the swimming performance of a fish with ribbon fins 
with a gradual change in slope. The leading edges were assumed to be sufficiently 
rounded to prevent flow separation. The Kutta condition was assumed to hold at the 
sharp trailing edges, from which a vortex sheet was shed in unsteady motion. Lighthill 
(1970) examined, by contrast, fins with unswept straight edges, assuming that the 
body sections behind the fins were smooth and did not shed any further vorticity. 
A general slender-body theory capable of embracing a wide variety of fin configura- 
tions was developed by Newman & Wu (1973), and included interactions between 
the body thickness and the trailing vortex sheets. 

The caudal fin, which is linked rather flexibly to the main body, generates thrust 
and side forces through lateral oscillations of large amplitude. These in turn are 
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produced by oscillatory side forces exerted by the body musculature on the caudal 
fin. To every action there is an equal and opposite reaction so the anterior part of the 
body is also subjected to oscillatory side forces. Any large yawing motions with which 
the anterior part of the body responds to such oscillatory side forces greatly increase 
the energy dissipation involved in swimming. As a complementary theory to the 
hydrodynamics of thrust generation by the caudal fin, Lighthill (1 977) developed 
a new theory of recoil based on the philosophy of Lighthill (1970), viz. a reactive- 
resistive theory, and estimated the amplitude of the yawing motion and the associated 
energy dissipation. 

In  $ 2  the equations of motion of the reactive-resistive theory, which is based on 
the ‘elongated-body ’ theory (Lighthill 1970, 1977), are presented. The equations are 
extended to cover cases both with and without vortex-sheet shedding from the h i l ing  
edge, following Wu (1971), and further modified slightly to facilitate the analysis of 
turning in 5 4. In  $ 3 the effects of both vortex-sheet shedding and normal drag forces 
on the recoil movements are studied and the associated energy dissipation is estimated. 
A refined numerical analysis using an iteration method is also presented. 

A mathematical theory of the turning manoeuvre when a fish suddenly changes 
direction is presented in $ 4. According to observations, directional control in fish is 
achieved in two ways (Gray 1968). When a fish is moving relatively slowly, paired 
fins such as the pectoral fins are used to change its direction either passively, by 
altering their angle of incidence, or actively, by propelling one side faster than the 
other. But when a fish is swimming rapidly the fins are usually held close to the sides 
of the body, and yet the fish can carry out very rapid changes in the direction of 
motion. A theoretical and quantitative approach to turning motion of the latter kind 
from a hydrodynamical point of view was first made by Weihs (1972), on the basis of 
films taken by Sir James Gray, parts of which appear in Gray (1933, 1968). Recently 
McCutchen visualized fish wakes by a shadowgraph method, a single frame from a 
movie film taken by a 3.15 cm Zebra Danio camera being shown in McCutchen (1976). 
This indicates that two vortex blobs (probably with the structure of vortex rings) 
are shed successively by the tail during the turn, the first (smaller) one being shed on 
the side corresponding to the direction of turn and the second (larger) one on the 
opposite side but almost to the rear with respect to the new direction of motion. A 
vortex ring carries a certain amount of momentum determined by its size and vorticity 
distribution. Accordingly, the shedding of a vortex ring gives rise to a reaction force 
on the body of the fish. This force is represented by an impulsive force in the mathe- 
matical model of turning in $ 4. The theory also takes into account drag forces and 
also reactive forces associated with the shedding of vortex sheets from sharp edges, 
both of which provide the centripetal force necessary for the turn. This manoeuvre 
in water is in striking contrast to the ‘banked turn ’ of flying animals or aeroplanes, 
whose inclined position supplies the lateral component of the lift needed for the turn. 

The investigation of infinitesimal perturbations to a uniform rectilinear motion in 
$ 4 not only helps to decide whether or not the motion is dynamically stable, but also 
leads to a full description of the motion that follows a given initial perturbation in a 
hypothetical dragless fluid. 

The present study is intended to give a mathematical formulation and solution 
which will be accurate enough to describe and predict the principal mechanism of 
both the passive response of the anterior part of carangiform swimmers and the 
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turning manoeuvre of the fish, perhaps not with complete precision but a t  least 
avoiding serious physical errors. The present analyses are based on the following 
basic ideas, theories and assumptions. 

(i) The elongated-body theory (unsteady slender-body theory) developed by 
Lighthill (1 960, 1970) and Wu (1 971) is applied. In  a frame of reference moving with 
the fish’s mean speed U ,  the fish is making undulatory movements in order to remain 
in the same average position in a stream whose undisturbed velocity is U ,  directed 
along the x axis. The cross-section of the fish a t  a distance x from the front is supposed 
to be displaced by an amount h(x, t )  in the direction z normal to the x axis. Following 
Lighthill (1970), we use W for the lateral velocity ahlilt of the cross-section a t  x and 
also 

for the velocity of lateral pushing of a vertical slice of water (perpendicular to the fish’s 
longitudinal axis) by the successive cross-sections past which it sweeps with velocity U .  
The lateral pushing with velocity um (n being a unit vector perpendicular to  the fish’s 
backbone) gives rise to lateral momentum m,,un per unit length in the water slice, 
where ma is the added mass of the water per unit length of the fish. Lighthill (1970) 

u’ = ah/at + uah/ax (1 .1 )  

gives a full discussion, taking 
mu = azps2, 

where p is the water density and s(x) the depth of the cross-section, in which case 
ctZ/+n is a non-dimensional parameter of order unity which is exactly unity for an 
elliptic cross-section of any eccentricity. The force in the n direction which the fish 
exerted on a water slice, per unit distance in the x direction, must equal the rate of 
change of the n component of momentum of the water slice as it sweeps past the 
undulating fish a t  velocity U .  This reactive force is thus 

G = (a/at + Ua/ax) m,(x) ~ ( x ,  t ) ,  (1.3) 

for a smoothly shaped section with rounded edges. On the other hand, Wu’s (1971) 
theory takes into account the vortex-sheet shedding at the body sections wihh sharp 
trailing edges to the rear of the section of maximum span. The effect of shedding a 
vortex sheet is equivalent to treating as constant when calculating the change in 
the cross-flow momentum. Thus the reactive force in the n direction is 

d 
ax 

mau~-Uzo-ma 

in the posterior sections with sharp edges, from which a vortex sheet is shed into the 
wake. It is also suggested by Wu (1971) that this effect, represented by the second 
term of (1.4), may possibly enhance the thrust production. Comparison of (1.3) and 
(1.4) enables one to write the reactive force G in the composite form 

G = (a/at + Ua/ax)  maw - el Uuwni, (1.5) 

where mi = dm,/dx, and el = 0 a t  sections with rounded edges and = 1 at sections 
with sharp edges. I n  many slender fishes, however, one observes that the body sec- 
tions behind the dorsal fin are also smoothly shaped and do not shed any vorticity, 
making el = 0. 
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(ii) In  order to investigate the effect of the vortex-sheet shedding on the swimming 
performance, we examine two cases: 

( A )  el = 0 for the sections anterior to the section of maximum span, and el = 1 
for the sections posterior to that section; 

( B )  el = 0 all along the body length. 
(iii) When pushing a slice of water, a body section experiences hydrodynamic 

resistance in addition to the reactive force mentioned in (i). This resistive force may 
increase the energy dissipation involved in swimming when the anterior part of the 
body responds passively to the oscillatory lateral forces. Here we consider an approxi- 
mate relation between the resistive force (per unit length) and the lateral motions 
with velocity w perpendicular to  the backbone. Fish cross-sections of depth s and 
much smaller width (in the direction of 10) are likely to give almost as much resistance 
as a flat plate of the same depth s. Such a plate moving perpendicular to itself at a 
steady velocity experiences a resistance &pu2sCn per unit length. Following Lighthill 
(1 977), the resistance formula 

Dnn = -&~C,slu~lun (1.6) 

per unit length is adopted here t o  describe the resistance to the normal motion irn. 
The drag coefficient C, = 2 will give an upper limit (Flachsbart 1935) by means of 
which the maximum possible importance of resistive forces relative to reactive forces 
can be estimated. We may assume a tangential frictional resistance of the form 

D, = *pC, su; (1.7) 

per unit length, where tit is the tangential velocity of the body surface relative to the 
water. 

(iv) I n  order to investigate the dynamical movements of the anterior part of 
the body of a slender fish performing carangiforni motion, the relatively inflexible 
anterior portion is represented by a rigid fish-like model of depth 

48 = s,,[1- ( t /a)21,  -a  Q 6 Q a, (1.8) 

where s, is the maximum depth, 2a is the length of the body while 6 is the co-ordinate 
along the length and is fixed relative to the fish with origin at  its midpoint. Large 
amplitude lateral movement of the caudal fin produces a reactive force, to which the 
anterior part responds passively. Thus the td- less  model is considered to be subjected 
to an unsteady force F(t) acting at  the posterior end, in addition to the reactive forces 
(i)  and the resistive forces (iii). It is thought that a flexible link at the peduncle re- 
conciles the two different motions. As shown by the analysis of Chopra & Kambe 
(1977) and interpreted physically by Lighthill (1977), the driving force is fairly closely 
in phase with the fin’s own lateral velocity for high frequency tail oscillations in 
lunate-tailed animals. 

(v) The body’s mass mb per unit length may be written as 

nib = a1ps2, (1.9) 

where a1 is a numerical constant. If the cross-section is an ellipse for which the ratio 
of the minor axis to the major is (T, one has 

a1 = )~T(T., c ( ~  = $77; thus a1/a2 = U. ( 1 . 1 0 ~ )  b,  c )  



538 T. Kambe 

We assume that a, is independent of 5, i.e. the cross-sections are similar along the body 
length. Strictly speaking, this may contradict case (iiA), in which the value of el is 
not constant along the body length. It is thought, however, that any longitudinal 
asymmetry of the cross-section is represented by the second term of (1.5). 

I n  the following we assume the relations (1 .  l o b ,  c) generally whether or not the cross- 
sections are elliptical, and also write 

a! 
a, = ",+a,, y1 = "1 - = - 0- y 2 = - L 1  -Y1, ( l . l l a ,  b, c) 

a, l + d  "0  

a, being given by (1 + u) a2 or $( 1 + u) TT. 

Watanabe & Kimura (1977) made a biomechanical study of carp to fabricate a 
self-propelled mechanical fish. Measurement of the cross-sections of the body of a 
sample fish (Watanabe & Kimura, private communication) shows that the value of 

for its nearly elliptical cross-sections, excluding fins, varies from about 1 near the 
nose to 0.5 or a little less near the peduncle with an average value 0.60. I n  front 
sections anterior to that of maximum depth u is larger than 0.6 while in the posterior 
sections it is about 0.5. 

2. Equations of motion in reactive-resistive theory 
The inflexible anterior portion is subjected to the reactive forces (i), the resistive 

forces (iii) and the force F(t) a t  f [  = a given in (iv). In  order to describe the motions 
generally, we choose a Cartesian co-ordinate system (5, Y ,  2) fixed in space in which 
the fluid is a t  rest, a t  infinity. The position vector of the centre of mass of the body is 
written as a function of time t :  X,(t) = (X,( t ) ,  Yo(t), Z,(t)). It is supposed that t,he axis 
of the body always lies in the plane 2 = 0. This is made possible by assuming that the 
2 components of the force acting on the fish balance at  each cross-section, assumed 
symmetric with respect to the plane 2 = 0, and therefore the resultant of the forces 
has only X and Y components. Thus the Z components of vectors are ignored in the 
following analysis. The depth s of a cross-section is used as the size in the 2 direction. 
The angle between the S axis and the body axis is denoted by 8 (figure 1).  It is con- 
venient to define a tangential unit vector t ,  a normal unit vector n and a unit vector 
ex in the -3 direction by 

t = (cos8,sin8), n = (-sinO,cos8), e ,  = ( - l , O ) ,  (2. la,  b , c )  

where t points from the nose to  the tail and turning t anticlockwise through 90" yields 
n. Thus in terms of 5 (a Lagrangian co-ordinate along the body axis) the position X of 
a cross-section is written as 

X = ( X , Y ) = X , + < t  ( - a < f [ < a ) ,  ( 2 . 2 )  

the nose lying a t  [ = - a and the posterior end at  f [  = a. The velocity V and accelera- 
tion A of a section with a fixed 5 are 

v = X = V, + tdn, ( 2 . 3 a )  

V, = ( v , ~ , K ~ - )  = X,, v,, = ~ , . n ,  v,, = ~ , . t ,  ( 2 . 3 b ,  c ,  d )  

( 2 . 4 ~ )  

A, = To, A,, = A,.n, A,, = A,.n, (2 .4b ,  c, d)  

A = V = A0+@n-f[82t, 



The dynamics of carangiform swimming motions 539 

n 

-a 

Y 

0 X 

FIGURE 1. Definition sketch of the co-ordinate system. 

where a dot denotes differentiation with respect to time t and the relations t = 8n 
and n = -8t have been used. It should be noted that, although the motion of the 
centre of mass considered here is not necessarily rect>ilinear, the angle 0 - q5 between 
the body axis and the direction of motion of the centre of mass is assumed to be small, 
where 

the angle between the x axis and the direction of motion of the centre of mass, SO that 
the perturbation theory of the swimming of a slender fish mentioned in (i) in 5 1 is 
still applicable. Thus the lateral pushing velocity defined by (1.1) is given by the 
normal component JL of the velocity of a section: 

V, = V . n  = &,+@ = & b + t ) ,  

where b = qn/8.  (2.7) 

(2.6) 

The velocity U of the free stream in the frame of reference fixed to the fish is given by 
minus the tangential component of the velocity of the centre of mass: 

u = -V, . t .  (2.8) 

(2.9) 

Therefore the force G in the n direction, defined by (1.5), which the fish exerts on the 
fluid can be written as 

G = (a /a t  + U a / a [ )  m,K - el UV,m;. 

The resistance (1 .6)  to the normal motion and the tangential frictional resistance (1 .7)  
can be expressed similarly and combined to give the total drag per unit length: 

D = D,n+D, t ,  (2.10) 

where D,= -1 2p C nslKIKn, D, = *pC,sU2. (2.11a, b )  
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The rigid fish model (iv), which is subjected to the three forces - G([)n, D(fJ and F(t) 
at = a, makes a response in which the lateral velocity has the form (2.6) and which 
satisfies the equations of momentum and angular momentum. The equation describing 
the conservation of momentum takes the form 

(2.12) 

Similarly the equation of angular momentum about t; = 0 is 

IU m b A n l d 6  = - / ~ ~ G E d E + / ~ a ~ n f d E + F n ' , a ,  (2.13) 

where A ,  = A.n and F, = F.n.  Hereafter we assume longitudinal symmetry of the 
fish's mass distribution, i.e. a symmetric distribution of depth s along the length such 

(2.14~)  
that 

and hence %(-g) = mb(E), m u ( - c )  = ma(E) (2.14b) c) 

by (1.2)and(1.9). Thenthe termontheleft-handsideof (2.12), withAgivenby(2.4~)~ 
becomes 

(2.15) 

-a 

4 - 8 = s ( c )  

mb [A, + C(8n - k)] d t  = Mb A,, 

where (2.16) 

(2.17) 

Hb being the tot,al body mass. Likewise the first term on the right-hand side of (2.12) 
(the inertial response of the water) can be written as 

(2.18 a)  

= Maq),+s@, (2.18b) 

where illa = 1, mad( =a2pKo, 

q), = d(V, . n)/dt = V,. n + U6, 

-a  
(2.19) 

(2.20) 

(2.214 

= Um,(O) V,, + U6 m,d& (ma( -a) = 0) ,  (2.21 b )  1: 
1 in case A ,  

0 in case B, 
.={  

Ma being the total added mass and [f]Z denotingf(x,) -f(zl). The function @ repre- 
sents the rate of transfer of lateral momentum to the water in the form of vortex sheets. 
As for the second term of (2.21 a), which comes from the second integral in (2.18a), 
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the reason is evident. The first term U[m-aV,]?-a, which arises from the second term 
in the first integral in ( 2 . 1 8 ~ )  and is given a full mechanical interpretation by Lighthill 
(1  970), is associated with the rate of shedding of lateral momentum m,(a) V,(a)  per 
unit length into the wake from the trailing edge 5 = a in the case mu( - a )  = 0, which 
is generally true for slender fish. For this reason the first term is included in 0. This 
term, however, gives no contribution to the model (1.8) since mu( & a )  = 0. 

Hence, by using (2.15) and (2.18b), the momentum equation (2.12) becomes 

M,Ao + (MUGn + s @ )  n = D:n+D: t + F, (2.22) 

where 

D: = Did[. 
--a 

(2.236) 

In almost the same way the angular momentum equation (2.13) reduces to 

(I, + I,) 8- H a  UV,, SY = &* + FnU, (2.24) 

where 

(2.25) 

(2.26) 

K ,  = t2sZd( ,  (2.27) 
--a 

(3.29) 

I, and I, being the moments of inertia of the body and the added mass about 5 = 0 
respectively. The function Y represents the reaction from the shedding of vortex 
sheets, the reasoning being identical to that for @. Thus we find that the system of 
equations (2.22) and (2.24), together with the auxiliary definitions, (2.20), (2.21), (2.23), 
(2.28), (2.29) etc., constitutes a system of three simultaneous first-order differential 
equations for the three unknowns GAY, V,, and 8. 

For the following analysis, it is convenient to rewrite (2.22). Using (2.20) and 
rearranging, this can be written in the form 

where 

M,Ao + MuAo,n = H n  +D: t + F, 

H = - M u U 8 - ~ @ + D ~ .  

(2.30) 

(2.31) 

Then the n and t components of (2.30) are 

where 
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This fells us that for lateral motions the system responds as if the inertia were the 
sum of the body mass ikfb and the added mass Ma, under the influence of the force 
H + F,, while for tangential motions the inertia includes only the body mass. The 
disappearance of the added mass for the longitudinal motions, which is much smaller 
than Ma, provides an estimate of the error involved in (2.30). Dividing (2.32) by Mo 
and (2.33) by Mb, we obtain 

A, = A,,n+A,,t = iM,I(H+F~)n+iM,l(D:+liZ)t, (2.35) 

which is another form equivalent to (2.30). 
The angular momentum equation (2.24) is written simply as 

Iod = R+F,a, 

where R = M,UJ&-C'Y+Q*, 

I, = Ib +I,. 

For the fish model (1.8) in (iv) in 8 1, we have 

Q = ma(o) UV,, + $Ma Ue,  

Y = +Mo UV,, + Nu U8, 
K -L6 2 g -23- a 

0 - igsrna, 2 - 1068% 31 

(2.36) 

(2.37) 

(2.38) 

(2.39) 

(2.40) 

(2.41), (2.42) 

(2.43) 

from (2.2ib),  (2.28), (2.17) and (2.27). Note that 

Mb = a;va =: a, pK,, Ib = aIa = a1 pK2. 

3. Recoil motions 
An oscillatory lateral force of amplitude F, and radian frequency 0) is assumed to 

act on the inflexible anterior part of the fish body. We write this in the complex form 
Foeiwt on the usual understanding that the real part is to be taken. The force driving 
the caudal fin is equal and opposife to this oscillatory reactive force. The mean longi- 
tudinal motion of the centre of mass is here assumed to be rectilinear and in the - X  
direction. As was assumed in the previous section, the deviation 0-4  of the body 
axis from the direction of motion of the centre of mass is small, and the lateral recoil 
movement in response to the fluctuating side forces of small amplitude is investigated 
here with only the lowest-order terms retained in the equations. We may put 

V,, = -U, (constant). 

This suggests, as may be seen from (2.33), that the mean tangential drag @is assumed 
to balance the mean forward thrust, - generated by the caudal fin, where the overbar 
denotes the mean with respect to time. 

Thus the governing equations are the remaining two equations (2.32) and (2.36)) 
after substitution of (2.31) and (2.37): 

$1, A,, = -Ma U , e  - C@ + D*, + Fn, (3.1) 

Iod = Ha&V,',,-eY++*+F,a, ( 3 4  

where Fn = Foeiht, (3.3) 
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acting a t  5 = a. In  a system controlled purely by inertia (0: = &* = 0) without flow 
(U,, = 0)) which leads to <D = Y = 0 and A,,& = Gn, it may readily be shown from (3.1) 
and (3.2) that these equations would make the displacement velocity 

V,(a) ( =  &,+ad) 

of the point [ = a lag in phase behind the force F, by in, or equivalently, the displace- 
ment Y(a)  would be in anti-phase with F,. Such a purely reactive response would 
correspond to a zero average rate of working by the force. Our interest is in the modifi- 
cations to this purely reactive response that result from the flow U,, the vortex sheets 
shed from trailing edges (@ and Y) and the resistance D,. 

Our system is controlled mainly by inertia, so that the anterior part of the fish body 
responds primarily to the lowest harmonic of the periodic force. Thus we may assume 
the simple harmonic form 

V,  = v(c) eiwt, (3.4) 

where V,  as well as v(() may be complex. With this form of V,, a good approximation 
to the resistive force D, given by (2.11 a )  is found to be 

Following Lighthill (1977)) we take k = 8/(3n) ( M 0.849)) which makes the expres- 
sion (3.5) differ from the exact resistive force (2.11 a )  by only higher harmonics 

( 2 n + l ) w  (n = 1,2 ,  ...) 

of relatively small amplitude. With respect to oscillations at  the fundamental fre- 
quency, the resistance law behaves effectively as a linear resistance with damping 
constant t p  kC,slwl. 

A rigid model of the anterior part of the fish responds by means of a linear yawing 
motion 

where b = b, + ib, is a complex number such that - 6 ,  represents the yawing axis of 
the oscillatory velocity V,. 

Using the approximation (3.5) for D, and substituting (3.4) and (3.6), we have the 
following expression : 

DZ = 1:. D,dc = - Epeiwt, 

where 

Similarly we obtain 

where 

(3.7) 

(3.9) 

Q* = 1. ~ , c d t  = -Eqeiwt, (3.10) 
--a 

(3.11) 
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Since 8 is assumed small, we make the approximation sin8 = 8 and c0s8 = 1, which 
yields the ( 3 . 1 2 ~ )  

(3.12 b) 

v,, = - 2, sin 8 + po cos 8 = P, + u,~,  
.. .. 

A,, = -X,sin8+Y0cos8 = y0 

from (2.1 b), ( 2 . 3 ~ )  and (2.4 c), and also the relations 

P = F0+f#cosO = F0+f8, 

v, = ~,,+f18 = P+u,e 
(3.1 3 a) 

(3.13 b) 

from (2.3a), (2.6) and ( 3 . 1 2 ~ ) .  Equations (3.4) and (3.6) give 

V,  = vo( 1 + [/b) eiwt, V,, = vo eiwt. (3.14a, b)  

Comparison of the coefficient of 6 in the two equivalent expressions for V,, i.e. (3.13b) 

(3.15) 
and (3.14a), gives # = (v,/b)eiwt. 

Integrating this and using (3.13b), we obtain 

= W(f)eiwt. 

( 3 . 1 6 ~ )  

(3.16b) 

Accordingly we have from (3.12 6) and (3.16) 

A,, = Y(< = 0) = iwlce iwt ,  16 = v,(l +iU,/wb). 
.. 

(3.17 a, b) 

Likewise we may write 0 = Qleiwt, \r = \rleiwt,  (3.18 a, b) 

where Q, = a,pti,v,s;(l +&a/b), (3.19a) 

(3.1 9 6 )  Yl = a,pU,v,s;a(&++a/b) 

from (2.39), (2.40), (3.14b) and (3.15). 
Substitution of (3.3), (3.7), (3.15), ( 3 . 1 7 ~ )  and ( 3 . 1 8 ~ )  into (3.1) yields 

M,iuWO = - .illa Ci,Vo/b - € 0 1 -  Ep i- F,, (3.20) 

where the factor eiwt has been omitted from all terms. Similarly with the aid of (3.10), 
(3.14b), (3.15) and (3.18b), (3.2) becomes 

1,iw v,/b = Ma U,v, - e\r1 - Eq + F,a. (3.21) 

These two basic equations (3.20) and (3.21) determine the yawing motion specified 
by the amplitude vo of the velocity at < = 0 and the complex yawing axis b. 

It is convenient to introduce the following dimensionless variables: 

[* = F , / l c l , ~ , ~ ~  (3.22) 

and V* = v,/s,w, /3 = b/a. (3.23a, b) 

Here 6, represents the ratio of the amplitude of the applied oscillatory force Foeiwt 
to the amplitude of the force which must be applied when the mass M, is oscillating 
with amplitude equal to the body depth s, and the same frequency w ,  whereas v* is 
the corresponding ratio of lateral velocities. 
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Equation ( 3 . 2 0 )  can be written in the form 

where u = 2aw/Uo,  h = $kC,. 
Similarly, eliminat,ion of Fo betu-een ( 3 . 2 0 )  and ( 3 . 2 1 )  yields 
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( 3 . 2 4 )  

(3 .25a ,  b )  

which represents the angular momentum equation about < = a .  It is easy to see from 
( 3 . 8 )  and ( 3 . 1 1 )  that we may write p(b)/s,a3 = p l ( P )  and q(b)/sn,a4 = ql (P) ,  where p ,  
and q1 are dimensionless functions of P. The third terms, involving the factor E ,  in 
both (3.24) and ( 3 . 2 6 )  represent the contributions of the vortex sheets shed into the 
wake, while the fourth terms containing the factor A represent the effect of resistance, 
and the second terms give the modifications due to the longitudinal motion of the 
body through the water. It is readily found that the solutions of (3.24) and ( 3 . 2 6 )  may 
be written in the form 

hv* = fl(X*, Yl)? P = f 2 ( X * ,  v,  71). ( 3 . 2 7 a ,  b )  

When <* < 1 and h = 8 / ( 3 n )  with C, = 2 ,  solutions in the form of series expansions 
with respect to <* may be found from ( 3 . 2 4 )  and ( 3 . 2 6 ) :  to lowest order 

( 3 . 2 8 a )  

( 3 . 2 8 b )  

These show that when the frequency parameter 1’ is large Rev* = O ( U - ~ [ * )  and 
Imv, = O(c*), where Re and Im stand for the real and imaginary parts respectively. 
According to  observations, the parameter 1’ takes values of around ten (Lighthill 
1969). When i becomes infinite in the above solution, v* tends to - i{* and ,!? to 3. 
These, however, represent an exact solution of ( 3 . 2 4 )  and ( 3 . 2 6 )  .crhen u = to and 
h = 0, i.e. when the effects of both the longitudinal motion through the water and 
the resistance to the lateral yawing oscillations are neglected, and express the purely 
inertial response of v([) e z w t  with the yaaing axis a t  <,,, = - +u and a phase lag of 
behind the force FOelwt, as mentioned before. 

The average rate of working E by the force FoetWt is given by 

i? = Re [FoeZw*] Re [ Tlr(n) efwt] 

= $ws,,FoRe[T!’,] = $ws,,,F0Re ( 3 . 2 9 )  

where (3.30) 

and the relation Re [a,eiwL] Re [b,e*wt] = 4 Re [ 4 b J  has been used for the time average 
(Zl = complex conjugate of a,). This represents the work which the fish must do to 
overcome resistance to yawing oscillations, in addition t o  the work needed to produce 



546 T .  Kambe 

the lateral movements of the caudal fin in order to generate forward thrust. It is 
found from (3.29) and (3.28a;, b) that 

E/&us,Fo = O(v-lc*) for <* < 1 ,  v > 1. (3.31) 

This states that the energy loss E is considerable compared with the case E = 0, 
which is considered in the next paragraph, where this considerable loss is shown to 
be caused by vortex shedding, although 

When the body sections are smoothly shaped and do not shed any vortices one may 
take E = 0. In  this case one finds the following series solution for small hc,: 

becomes of higher order for v = co. 

(3.32 a) 

(3.326) 

where 

(3.34a, b) 

(3.35a, b )  

Only the first terms a,[* and Po are independent, of A ,  which represents the effect of 
the resistance. From (3.320, b )  and (3.29), the energy loss is 

-- E - <*Re [ - i  8vzc28y2] +h<$Re [a2+ (1 +:) p,.,-p,**l] +O(h2c$) 
$usn, Fo v2 + 28YlY2 P O  

(3.36) 

where Pm = Po(v = a) = 1. ? ,  note that Pl(Pa) and Q1(PZ) become real in this case. It 
is straightforward to show that PI + Pl/P + Q1/P2 is 63.504/a0 ( > 0) at  ,L? = Pm since 
pl(PC) =/3m+$P%-&3L = 0.1448 and ql&) = ++@i-$P$+&#z = 0.1768. It is 
remarkable that the first term of E ,  which is proportional to c*, disappears and that 
its leading term becomes proportional to Ac$ ; further, E vanishes when h = 0. Thus 
the E in (3.36) represents only the resistive dissipation. Thus (3.31) and (3.36) suggest 
that the reactive effect of vortex shedding could cause an increased energy loss. This 
loss is proportional to v - ~ { *  for a finite but large v ,  while for small <* the resietive 
energy dissipation is proportional to A{$,  which is of higher order with respect to [*. 

It may be of interest to define the point of action 5, of the vortex-sheet force by the 

(3.37) 
equation ,& = Re Y/Re CD. 
Using (3.18) and (3.19) we find 

_____ 

&, = a Re [ 5  + 8P]/Re [S + 15P] w 0 . 6 1 ~ .  (3.38) 

Numerical results and discussion 

A numerical method is adopted to solve the system of equations (3.24) and (3.26) for 
moderate <*. A method of successive approximation is employed. For given values 
of the paramet’ers <+, J’ and g, the zeroth approximation (v$“, P ( O ) )  to (v*, ,4) is given by 
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FIGURE 2 .  Case A (c = 1, v = 0.6): the real and imaginary parts of W, are plotted as functions 
of {* for various values of the rcduced frequency v ;  h = 8/37-r. 

(3.28w, b) .  In practice, however, a known solution pair (v,,P') for a certain c i  i s  used 
as the zeroth approximation for a neighbouring [* ; this ensures rapid convergence. 
If the nth approximation (v?),,!?(~)) for a fixed c* is known, the next approximation 
/3(n+1j is sought by applying Newton's method to (3.26) with u p )  substituted in l o * / .  
To estimate the integrals p and q defined in (3.8) and (3.11) as functions of p (or b ) ,  
thefactor ([+bl isreplacedby[+bwhen[ > -Rebandby -([+b)when[ < -Reb, 
since Tmb is very small, as is confirmed by the final result. The (n + 1)th approxi- 
mation v$'+l) is obtained simply by substituting ,6Jn-t1) and v p )  into the curly bracket 
on the left-hand side of (3.24). The convergence condition is that  the differences 
between successive values of v p j  and /P) are both less than In this computation 
we always took h = 81371 and C, = 2. 

The average rate of working E by the force Foeiwt is given by (3.29) and is propor- 
tional to Re W*. Figure 2 shows Re IV, and Im W.. vs. {* for three values of the fre- 
quency parameter, 11 = 6, 10 and 14, for case A with (T = 0.6. The imaginary part 
I m  W* is always negative, while the real part Re W* is always positive, generating 
energy dissipation. The calculated values of lop, [ = 5(1 -p) ]  are given in table 1 
for (T = 0.2, 0.6 and 1.0. Taking account of the linear behaviour of Re W, for small {* 
in figure 2, as suggested by ( 3 . 2 8 ~ )  b) ,  we may write W, = K[*  ( K  = K,, + i ~ ~ ) ;  then the 
rate of energy loss (3.29) can be writ,ten, using (3.22), as 

(3.39) 

This suggests, with the help of the relation Mh/U = Ma oc s t a ,  that a fish whose maxi- 
mum depth s, is large enough may have a very much reduced rate of energy dissipa- 
tion and also that reduction of the energy loss should be expected for a larger a. The 
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u = 0.8 
cr = 0.2 -h-__ 7 u = 1.0 n v =  10 ~ = 6  v = 10 v = 14 v = 10 

0 4.32 - 0.15i 4.23 + 0.20i 4.26 + 0.132. 4.27 + 0.09i 4.24 + 0.3Ci 
0-05 4.34-0.09i 4-18+0.20/ 4.23+0.142. 4*23+0.11i 4.19+0.30i 
0.10 4.33-0.06i 4.15+0.19i 4.20+0.14i 4.22+0.122. 4.15 + 0.30i 
0.20 4.31-0.02i 4.12+0.17.3 4.16+0.142. 4.18+0.122. 4.09 i- 0.27.i 

TABLE 1 .  Values of lOj7, [Pm = A( 1 -p ) ]  in case A ,  Corresponding to figure 2. 

V u = 0.2 u = 0.6 u = 1.0 

6 5.54 - 5.42i 4.16 - 6.47i 3.32 - 6.892. 
10 3.68 - 7.022. 2.73 - 7,382. 2.19 - 7.542. 
14 2.70- 7.50i 2.01 - 7.67i 1.61 - 7.76i 

TABLE 2. Values of K defined by dW,/d<, at <* = 0 in case A ,  
obtained from (3.30) and (3.28a, b ) .  

calculated values of K are listed in table 2, which shows that K, is reduced both for an 
increased cr with v fixed and for an increased v with cr fixed. When CT is increased with 
the other parameters held constant, then the body mass Mb becomes larger (.&la fixed) 
and K, is reduced, therefore one obtains a reduced E from (3.39). (Similarly an in- 
creased frequency o yields a reduced E . )  We have found that almost circular trans- 
verse cross-sections with cr 5 1 in the anterior part of the body yield a smaller rate 
of energy dissipation due to the yawing oscillations than do flat shapes, although 
' transverse compression ' at the posterior end of body improves propulsive efficiency, 
as shown by the elongated-body theory (Lighthill 1970) .  

For the sake of comparison, it may be interesting to examine a fish whose trailing 
edges are sufficiently rounded and whose body is sufficiently slender to prevent the 
shedding of vortex sheets from the edges. The recoil movements of a fish of this kind 
can be found in the present analysis simply by putting 6 = 0 (case B).  This case corres- 
ponds to that studied by Lighthill (1977) .  The results for this case are shown in figure 
3 (cr = 0.6) and table 3. We find a considerable reduction in Re W, compared with the 
corresponding cases in figure 2, which means that the energy dissipation is much less 
for a recoil without vortex-sheet shedding. The curve given by the first term of (3.36) 
is also plotted in figure 3 for h = 8 / 3 ~ ,  a. = $( 1 + CT) T aod CT = 0.6. 

The lateral displacement of the body during the recoil motion is found by integrating 
(3 .1  G a )  with respect to t and taking the real part: 

where r = ti,t/Za and p = arg (v,/p). Note that the amplitude of the displacement' is 
largest at  6 = a (the posterior end) since it is proportional to [(p, + ( / a ) z  + (pi + 2 / ~ ) ~ ] *  
and p, 3. The second term in the curly brackets in (3.40) describes a sideslip motion 
of amplitude [pi + 2/v(  independent of the position 6, while the first corresponds to a 
yawing oscillation about the axis 5 = - pra. 

According to Bainbridge (1  963), there is no nodal point on the body which does not 
move laterally, i.e. every part of the body oscillates about the mean line of progression. 



The dynamics of carangiform swimmin.g motions 549 

0.4 

0.2 

0 

- 0.2 

- 0.4 

- 0.6 

FIGURE 3. Case B ( E  = 0, u = 0.6): the real and imaginary parts of W, are plotted as functions 
of {* for various valuos of the reduced frequency v ;  h = 8 1 3 ~ .  The broken line is tho parabolic 
cur\'e given by the first term of (3.36): (63.50/a0) A{:. 

u = 0.6 
u = 0.2 I------- A 7 u = 1.0 r* v = 10 v = 6  v = 10 v = 14 v = 10 

--- 

0 4.28 + 0.05i 4.19 + 0.46i 4.25 + 0.28i 4.27 + 0.20; 4.24 + 0.4% 
0.05 4.25 + 0.07i 4.10+ 0.44i 4.18 + 0.29i 4 3 1  + 0.22i 4.17 + 0.43i 
0.10 4.22 + 0.09i 4.04+0.41i  4.13+0.28i 4.17+0.22i 4.11+0.41i 
0.20 4.18 + 0.09i 3.97 +0.35i  4.07 + 0.2% 4.12 + 0.20i 4.03 + 0.37i 

TABLE 3. Values of lop, [p, = t ( l -p)]  in case B, corresponding to figure 3. 

This occurs also in (3.40) if pi + 2/v $. 0, which is generally expected when v is not 
infinite. The three fishes studied (dace, bream and goldfish) have a point of minimum 
yaw amplitude somewhere posterior to the operculum. A rough reading of Bainbridge's 
figures ,which give the distribution of the mean speed of lateral movement along the 
body length, shows that the fractional distances x, of the point of minimum amplitude 
from the snout relative to the length from the snout to the anterior edge of the caudal 
fin are 0.36 (dace), 0.31 (bream) and 0.29 (goldfish). In the present analysis the corres- 
ponding fractional length would be defined by Rep,, which is 0.42 for 6 = 1 or 0 with 
y* = 0.05, CT = 0.6 and v = 10. According to Fierstine & Walters (1968), for the wavy- 
back skipjack (a scombroid fish) this point of minimum amplitude is somewhere near 
the base of the pectoral fin. A rough estimate of this position from their figure 1 shows 
that the value of x, is around 0-31. To minimize the yawing movements at  the snout, 
it may be preferable to have a smaller value of xm as well as for the yawing amplitude 
itself to be minimized. The observed values of x,, which are smaller than that in the 
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present analysis in spite of the similar lateral body shapes, may be partly due to the 
rather asymmetric mass distribution (more mass in the anterior half of the body of 
scombrids; see Fierstine & Walters) and fin arrangement. 

Fierstine & Walters found for the wavyback skipjack that t,he snout amplitude yo 
relative to the body length is around 0.03. The corresponding expression in the present 
theory is 

By using an estimated slenderness parameter 6 z 0.25 and tables 1 and 3 (v = 10, 
u = 0-B), we obtain 

and thus IW,l w 0.16 when yo = 0.03. 

This implies with the help of figures 2 and 3 that 

yo = 0491w,1, 

6, E 0.02 for both case A and case B. 

At this value of 6, the associated energy dissipation (or equivalently Re W,) is found 
to remain much smaller in case B (e = 0 )  than in case A .  This seems to give a clue to 
the reason for the folding of dorsal fins during steady swimming often observed. 

4. Turning manoeuvres 
According to Weihs (1  972), the turning process is made up of three distinct phases 

characterized by different types of movement of the centre of mass. In  the first stage 
the centre of mass continues in a straight line. A substantial turn of the nose to the 
side of the turn (say, left) produces lateral forces, which are to be represented in (2.30) 
by the n-component forces except for F (probably the main contribution is from the 
resistive force Dz). These lateral forces are almost balanced by the more effective 
momentum-shedding force from the caudal fin generated by a smaller movement of 
tail to the left [which produces a reaction force to the right, which would be represented 
by F in (2.30)]. Thus the net effect is a couple permitting rotation about the centre of 
mass. In  the second stage the centre of mass describes a highly curved path, indicating 
a substantial force towards the centre of the turn, while in the last stage the centre 
of mass again moves in a straight line, this time in the new direction of movement. 
The tail becomes straight, perhaps contributing a force to balance any loss of mo- 
mentum due to the drag during the turn, and finally the rotational movement of the 
body about the centre of mass ceases. 

In  our mathematical model of a turning fish, the first stage is replaced by application 
of an impulsive side force F0n8(t) at the end 6 = a to produce rotation of the body in 
addition to the rectilinear motion of the centre of mass. Here the subsequent turning 
motions of the body, corresponding to the second and third stages just described, are 
studied by integrating the equations of motion (2.35) and (2.36). The start of the 
third stage may be represented by application of another impulsive force F,(t). These 
forces represent the shedding two vortex rings during the turn, as inferred from the 
work of McCutchen mentioned in $ 1 .  It seems that the shedding of the first vortex 
ring contributes to the production of rotation of the body, while the shedding of the 
second primarily contributes to the recovery of the kinetic energy lost during the turn, 
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or the maintainance of the tangential velocity against drag during the turn and 
partly to the generation of a normal force. This is supported by the fact, shown later, 
that the rectilinear motion of a fish-like body is changed smoothly to a new direction 
by the first impulsive lateral force without requiring any counter-rotating moment 
generated by additional external forces, although a certain loss of kinetic energy is 
involved in the process. Only the effect of the first vortex ring is studied here. 

Equations (2.35) and (2.36) are taken as the governing equations for the turn. 
Using (2.39) and (2.40), the terms H and R defined in (2.31) and (2.37) are rewritten as 

where 

H = - (1 +&)M,UB-€m,(O) Uv,,-*pC,IB(BP(b), 

R = - SN, ue + (1 - *€)Ma uv,, - *pC,JS@?(b), 

(4.1) 

(4.2) 

(4.3) 

(4.4) 

The last terms in H and R are obtained by substituting the last expression in (2.6) into 
( 2 . 2 3 ~ )  and (2.29), respectively. 

For convenience, we non-dimensionalize (2.35) and (2.36) by dividing lengths, 
times, velocities, accelerations and forces by a, a/U,, U,, rJi/a and pa2Ut respectively, 
where U, is the velocity of the rectilinear motion before application of the impulsive 
forces, and also dividing KO, K ,  and masses by a3, a5 and pa3. If  we substitute 

h = H/pK,, f = F/pK,, dt = D:/pK,, (4.5a, b, c )  

which are all divided reduced by Ui /a ,  and 

r = R/pK,, c, = K,/K2, (4.6a, b )  

which are divided by Uia-2 and a-2 respectively, and use the same symbols for the 
non-dimensional variables, then (2.35) and (2.36) read 

where 

A, = (X,, Yo) = ail (h  + f,) n + ayl(dt + f t )  t, (4.7a) 

8' = ailr  +a;lc,f,, (4.7b) 

h = - ~ , U ( C , ~ + C , ~ ~ ) - ~ C , G , ~ ~ S ~ ~ ( ~ ) ,  (4.8) 

r = -012U(CQ8-CqV0,)-SC6C,ele1 q(b) ,  (4.9) 

( c i ; i  = 0,1 ,  ..., 6)  = ( ~ , ~ + S E , ~ ~ S , Q ~ E , ~ ( ~ - ~ S )  , 1 6 9  15 ",A), 1 6  (4.10) 

and s,, divided by a,  represents twice the slenderness parameter IS. 
For simplicity we assume dt = 0 in the following unless specified otherwise. This is 

justified if the time scale of the turn is much smaller than the time scale of the de- 
celeration due to the tangential friction drag. It is easy to show that (4.7a, b )  permit 
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a permanent uniform motion given by V,, = 0 and 8 = 0, i.e. V, and 8 are constant 
and V, is parallel to t provided that f = 0. Without loss of generality, we may take the 
motion before the perturbation to be uniform and given by 

x, = - t ,  yo = e = o (t < 0). (4.13) 

We assume a perturbation in the form of the delta-function 

f = a,I,&(t)n, (4.14) 

which is applied at  [ = 1.  Hence we obtain the following initial conditions by inte- 
grating (4.713, b )  with respect to t over an infinitesimal interval including t = 0: 

So( + O )  = - 1,  X,(O) = 0, ( 4 . 1 5 ~ )  

[Q+: = Po( + O )  = I,, Y,(O) = 0, (4.15 b)  

[B]?! = 8( + 0) = c,I,, e(0) = 0, ( 4 . 1 5 ~ )  

where [g]+! = lim [g]?:. Under these six initia,l conditions, the three second-order 

simultaneous equations (4.7a, b )  can be integrated with f = 0 for subsequent times. 
The total momentum change A P  given by the impulse (4.14) is found by integrating F, 
and noting the dimensionless relation F, = KO f, = FO6(t),  say, which gives 

€ + f O  

F, = “oK,Io. 

AP = lim F,dt = Po = HoI0, where 41, = a,K,, (4.16a, b)  

this dimensionless form (4.16b) being obtained from (2.34). In dimensional form, we 
have 

AP = &1,C&I0, (4.17) 

from which we readily see the meaning of the intensity factor I, in the disturbance 
(4.14). Using (2.34) and (2.41), one readily obtains AP/aopaL\ = &;Io. 

E - + O  r - €  

Thus 

Small perturbations 

Investigation of infinitesimal perturbations to the uniform rectilinear motion (4. 1 3) 
of a fish-like body not only helps in deciding whether or not the motion is dynamically 
stable, but also supplies the asymptotic behaviour in the final period of a turn. More- 
over it leads to a full description of the motion that follows a given initial perturbation. 
In  the preceding section we considered uniform motion characterized by V,, = 8 = 0. 
In a perturbed motion V,, and 8 are taken as small quantities (0 is not necessarily 
small) and therefore the drag terms proportional to 6161 in the definitions (4.8) and 
(4.9) of h and r are neglected here. The governing equations take the same form as 
(4.7a, b )  except that 

h = - a 2 u ( C l ~ + c 2 v , , ) ,  (4.18a) 

r = - a 2 ~ 7 ( ~ 3 0 - ~ 4 J ~ n ) .  (4.18b) 

These are equivalent to the equations of motion in a dragless fluid. Introducing a unit 
vector e = ( -  cosq5, -sin$), we can write V, = q e ,  where Ji is the magnitude of 
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the velocity of the centre of mass, Q being defined in (2.5). Then one has 

A, = G e + & e  x --Gt--&4n, (4.19a) 

(4.19 b) 

( 4 . 1 9 ~ )  

where V, and 6 - 4  are taken as small and therefore e and e are replaced in ( 4 . 1 9 ~ )  
by -t and - 4n respectively. Substitution of ( 4 . 1 9 ~ )  into ( 4 . 7 ~ )  yields 

u = -vo. t = v,cos(6-Q) x v,, 

V,, = V,.n = V,sin(6-4) x &(6--$), 

-zl$ =ft, -Q,V,$ = hi - f , .  (4.20), (4.21) 

Prom (4.20), we have V, = constant when f t  = 0 [or when f t+dt  = 0 in (4.7a)l .  We 
assume f, to be of the form (4.14). Thus using (4.18a, b)  and (4.19c), (4.21) and 
(4 .7b)  can be written as 

(4.22) 

e =  - Yz&[C3~-C4%(6-Q)1 + c o ~ o w ) >  (4.23) 

where y z  = 1/ (  1 + (T). Elimination of 6 - 4 between these equations leads t'o 

C Z  8 = - Y ~ v , ( c ~ c ~  + ~ 1 ~ 4 )  S + C ~ F L ~  + ( ~ 2 ~ 0  + ~ 4 )  ~ o S ( t ) .  (4.24) 

Equations (4.22) and (4.24) constitute a pair of differential equations for q5 and 0 
with a disturbing impulse given by a &function. To integrate, one makes the assump- 
tion Q = C+AeAt t ,  6 = C+BeAt ( t  > 0 ) ,  (4.25a, b)  

where Cis a constant common to both 4 and 13, and the const,ants A and B are assumed 
small. According to whether Re h is negative or positive, t'he deviation angle 0- Q 
tends to zero or infinity as t + 00, and the state of motion may be called stable or un- 
stable, respectively. Substituting (4 .25a)  b)  into (4.22) and (4.24) supplies for t > 0 

( A  + Y z C z W A  = Y&lh +-2WB, ( 4 . 2 6 ~ )  

[c2h+y2VO(c2c3+c,c,)]B = c,v,A. (4.26b) 

These are two linear homogeneous equations for A and B and yield non-trivial solu- 
tions only if h satisfies the equation 

h c (&j2 + (C2 + c.3) - + C1C, + c2c3 - 3 = 0, 
Y2 Y2K 

whose two roots are given by 

= $yp&{ - ( ~ 2  + ~ 3 )  G'), 

(4.27) 

(4.28) 

where c! = ( C p  - - 4C1C4 + 4C,/y2. (4.29) 

If the two roots coincide, i.e. G = 0, the forms of (4.25a, b )  permit only one solution 
with h = A,, where A, = - & y 2 & ( c 2 t c 3 ) .  Another independent solution is found to 
be of the form 

Q = Atexp(h,t), 6 = Btexp(h,t). 



554 T. Kambe 

One finds A, < 0 for the c2 and c3 given in (4.10) with E = 1.  I n  general, using the ci's 
in (4.10), one obtains from (4.28) and (4.29) 

h = S Y ~ G ( - ~ & ~ G ~ ) ,  G = 3 1 1 ( ~ - ~ z ) / 1 6 ~ z .  (4.30a, b) 

Thus for yz > y i  = a (x 0.72), (4.27) has two complex-conjugate roots with nega- 
tive real parts (y2& > 0), and therefore disturbances damp in an oscillatory manner. 
For yz < y i ,  there are two cases: one with two negative real roots, the other with one 
negative and one positive real root. The critical value of y 2  dividing the two cases, 
i.e. the value ye a t  which transition from stability to instability occurs, is given by 

yc = c4/(c1c4+c2c3), (4.31) 

yielding ye = ig = 0.4794 (ac = (1 -yJ/yC = 1.086), below which (or for a above a,) 
we find a positive real root. This result can be summarized as follows: the state of 
rectilinear uniform motion is unstable if y2 < yc, while disturbances damp monotoni- 
cally for ye < yz < yg and damp in an oscillatory manner for yf c y2 < 1.  

It may be interesting to note that the motion is always unstable if no vortex sheet 
is shed from the trailing (side) edge, i.e. e = 0. I n  this case one has 

(c1, c2, c3, c4) = (1 ,0 ,0 ,7) ,  

-&=* [7('-1)]. 1 
for which (4.27) reduces to 

Thus we always have one positive real root (exponentially growing solution) since 
y 2  < 1 .  This is consistent with the well-known theorem in the theory of the motion 
of a rigid body without vortex shedding (irrotational flow around a solid in motion) 
that translational motion of an ellipsoid in the direction of its longest axis is unstable 
(Lamb 1932, art. 124). We may say that, although our fish-like model is not ellip- 
soidal, its longitudinal axis would correspond to the unstable axis of the ellipsoid. 

From (4.22) and (4.24) much more information can he obtained about the behaviour 
of the body than merely a stability criterion. One can analyse in detail the kind of 
motion that sets in after a body in steady rectilinear motion with velocity has been 
disturbed by an impulsive force so long as Q - 8 remains small. As mentioned earlier, 
this may be either motion caused by a small perturbation or motion in a hypothetical 
dragless fluid. We may take V, = 1 .  

Equation (4.27) is assumed to have two different roots A, and A, (A, > A 2 ) .  Then for 
each of these, say A,, one obtains from (4.26a) or (4.26b) a ratio K~ = B,/A, and thus 
the corresponding solution pair (A,exp (h,t) ,  h-,d,exp (A, t ) )  for (9, 0). The fact that 
(4.22) and (4.24) are linear and homogeneous for t > 0 leads to a general solution of 
the form Q, = ~oc+A,exp(h , t )+Azcxp(h , t ) ,  (4.32a) 

0 = (4.32 6) + B, exp (h,t) + B, exp (A,t),  

where B, = K~ A,, B, = K~ A,, (4.33) 

and the three arbitrary constants Q,m, A, and A, are introduced, since (4.22) is a first- 
order differential equation and (4.23) a second-order differential equation. 
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The initial conditions are obtained from (4.22) and (4.23) as before: 

$(+(I)= -lo, 6 ( + 0 ) = 0 ,  8 ( + O ) = c o I 0 ,  
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which become on using (4.32a, b)  

$m+A,+A, = - Io ,  (4.34a) 

AlK1Al+A2K2A2 = coIo. (4.34c) 

qL, + KIAl + K2A, = 0, (4.34 b)  

This system of algebraic equations for $00, A,  and A ,  can be readily solved, yielding 

$00 = VO/D) {Kl KAh, -A,) + CO(K2 -.I)>, ( 4 . 3 5 ~ )  

A ,  = v o m  {A, K2 - CO(K2 - 1 )>, (4.353) 

(4.35c) 

where D = K~ K ~ ( A ,  - A,) + K , A ~  - K,A,, the determinant of the coefficients of the system 
of equations (4.34a, b, c) .  As an example we take a model of elliptic cross-section with 
CT = 0.6, giving y, = 0.625. The expression (4.28) with V, = 1 gives 

A ,  = (Io/D) { - A1 K1+ Co(K1- 1 ) > 7  

A, = - 0.4387, A, = - 1,5144, (4.36) 

then (4.26a, b) yield K, = 0.8430, K, = 1.1135. (4.37) 

Thus one finds from (4.33) and (4.35) that 

($m, Al,A2, B,, B,) = Io(9.465, - 8.088, - 2.377, - 6.818, - 2.647). (4.38) 

The behaviour ofthe angle $ given by ( 4 . 3 2 ~ )  and (4.36) shows amonotonic approach 
to the limiting angle $m, the final direction of motion. This angle is found to be pro- 
portional to the magnitude of the impulse I, from (4.38): 

$w = 9.465 I, = 9.465 F,/M,, (4.39) 

where ( 4 . 1 6 ~ )  ha,s been used. It is found that an infinitesimal perturbation gives rise 
to an infinitesimal change in the direction of motion. In this sense the present system 
is not ‘stable’ in the usual sense that the original state is recovered, but may be called 
‘quasi-stable’. Comparison between this $m and the final angle obtained from the full 
expressions ( 4 . 7 ~ 4  b),  described in the next subsection, shows the effect of the normal 
drag D, . 

Numerical results 

A numerical investigation of (4.7a, b )  has been made under the initial conditions 
(4.16a, b, c )  by the Adams-Bashforth method. The parameters involved are the depth 
parameter s, and the shape parameter G of the cross-section, which is fixed at a 
typical value 0.6. Also, the drag coefficient C, is fixed at  2.0. 

Figures 4(a),  4(b) and 6(a)  show, respectively, the time development of 8, 6-4 
and V i ( t ) /  Vi (0 )  (the kinetic energy of the body relative to the initial kinetic energy, 
where VE(t) = VEX+ V&) for case A (c = 1 )  for s, = 0.6 and different values of 7, 
where 7 = (s,/0-2)2 I, = 91, (the introduction of the factor (s,/0.2)2 will be explained 
later). The broken curves in figure 4(a)  are the analytical curves given by (4.326) 
with (4.36) and (4.38) for 7 = 0.1 and 1.0, where the normal drag term is neglected 
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FIGURE 4. Case A ( E  = 1 ,  s, = 0.6, g = 0.6, C, = 2 ) :  evolution with time t of ( a )  8 and ( b )  
0-d for fixed TI (=  91”). The broken curves show the reactive responses (without resistance) . .  “I 

given by (4.32b) with (4.36) and (4.38) for q = 0.1 and 1 .  

7 0 2 4  6 8 10 0 & 4 6 8 10 

( 0 )  (b) 

t t 

FIGURE 5.  Case B (8  = 0, s, = 0.6, CT = 0.6, C, = 2 )  : evolution with time t of (a )  0 and 
(6) 0-0  for various values of q ( =  91J. 

as well as the tangential drag term. Thus the contribution from the normal drag is 
given here by the difference between the solid and broken curves with the same 7 
and leads to a reduction in the angle of turn. The reduction is larger for larger 7. One 
finds from these figures that both 8( t )  and &(t) tend to limiting values depending on 7 
while the difference angle 6 - q5 damps rapidly. 

As shown in the small perturbation analysis, the rectilinear motion is unstable if 
E = 0 (case R), i.e. if no vortex sheet is shed from the trailing edge. For this case curves 
of 6,  8 - q5 and Vi(t)/  V:(O) us. t for various 7’s are given in figures 5 (a), 5 ( b )  and 6 ( b ) ,  
respectively, and show that 8 is still increasing a t  t = 10 while V, is decreasing. 
This is in striking contrast t o  the corresponding behaviour when E = 1 given above. 
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FIGURE 6. Ex olution with time t of the kinetic cnergy of motion $Mb V i ( t )  relative to the initial 
kinetic energy +Mb T’E(0) for various values of 7 :  ( a )  case A ,  corresponding to figure 4;  ( b )  case 
B, corresponding to figure 5. 

FIGURE 7. Time sequence of positions of the longitudinal body axis in case *4, corresponding to 
figure 4:  (a )  7 = 1 ;  ( b )  7 = 3. The dot shows the position of the centre of mass a t  each time 
marked, the time unit being a/lJ,. 

Another remarkable change from the previous case is found in the difference angle 
8 - 9, which doesnot tend to zero as t becomes large. Observations show that, in scom- 
broid fishes with triangular ‘sail-shaped’ (Wu 1971) fins, the first dorsal fin can be 
completely retracted into a groove in the dorsal surface of the body (Harris 1936). 
Also, many teleosts are seen to erect the first dorsal fin during a turn, probably to 
enable the difference angle to approach zero and the body rotation to stop rapidly, 
while normally this fin is depressed during swimming and gliding. This reminds US 

of the result in 8 3 that the energy loss associated with recoil movements is minimized 
when vortex shedding is absent. 

A time sequence of positions of the longitudinal body axis is plotted in figures 
7 ( a )  and ( b )  for 7 = 1 and 7 = 3, respectively, with e = 1 and CT = 0.6 (the time 
unit being a/V,). The path of the centre of mass is to  the right a t  first, conforming 
with the initial impulse, then turns to the left, as clearly shown in figure 7 (b) .  Note 
that these diagrams are compared with tracings of the position of the backbone of a 
rudd during a turn in Weihs (1972). 
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FIGURE 8. Case A (8  = 1, a = 0.6, C, = 2). (a )  Final angle of turn 4, us. 7;1 ( =  ~ , ( ~ , / 0 ~ 2 ) ~ )  for 
various values of 8,. The broken lines show the reactive response (4.39). (b)  The ratio of the 
final kinetic energy &Mb J7& to the initial kinetic energy kMb UZ, us. 6, for fixed s,. Note that 
d, = 0 is assumed in the numerical computation. 

The final angle of turn q5, is plotted in figure 8 (a) against 7 for E = 1 and five values 
of s,, where rj = I , ( s , / O . ~ ) ~ ,  so that the total applied impulse AP is unchanged if q 
is fixed for the various s,'s as is readily seen from the statement just below (4.17). This 
figure tells us that for a fixed lateral impulse AP the angle of turn 4, increases with 
decreasing s, (or decreasing slenderness parameter 6) except for very slender fish with 
s, = 0.2. The broken straight lines tangential to each curve a t  7 = 0 are those given 
by (4.39), which represents the reactive response of a body shedding a vortex sheet 
without any resist'ive drag. The reduction, in the angle of turn due to the drag is 
found from the difference between these lines and the curves. Figure 8 ( b )  shows the 
ratio of the final kinetic energy &Mb v$ to the initial kinetic energy tMb u$ for four 
different s,)s. Its difference from unity gives the relative energy loss during the turn. 
Note that in this computation the tangential drag is neglected and therefore the loss is 
caused by the reactive force due to the vortex sheet and the normal drag. We find 
from the figure that the loss is very small if the turning angle is small, or equivalently 
the lateral impulsive force is small. Even for a turn through 40") the loss is as small as 
10 yo except for very slender fish with s,, = 0.2. The figure suggests that if a large 
angle of turn, say 90") is required, not a single turn but two turns through 45") for 
example, may be better from the point of view of economy of energy if enough time 
and space are available. From figure 8 (a )  one can estimate the magnitude of the im- 
pulse AP to be applied in the turn. For a typical fish with s, = 0.5 and w = 0.6, the 
impulse AP is given by &M0 U, = (1 + 1/w)  ( O . ~ / S , ) ~  7Mb U, = O.4277Mb u,. The figure 
shows that 7 z 1 for 4, = 45" and 7 z 3-24 for $m = 80") corresponding to the turning 
of a rudd studied by Weihs (1972). Thus one finds that AP = 0.43MbUo for 9, = 45' 
and 1-39MbU, for q5m = 80". 

Discussions 
Two ways in which a flying object can turn are known in the theory of flight (von Mises 
1945). In  the banked turn used in regular cases the lift of the aeroplane, say, which is 
brought into an inclined position by operating the ailerons, supplies the cross-force 
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needed for the turn. In  the so-called ‘flat turn’, on the other hand, the wings are kept 
horizontal, but the instantaneous direction of flight does not necessarily coincide with 
the longitudinal axis of the aeroplane, the balancing moments being provided by an 
appropriate setting of the control surfaces (elevators, rudder and ailerons). The devia- 
tion angle, called the sideslip, would produce the cross-component of the aerodynamic 
forces, called the ‘side force’, needed to produce the centripetal acceleration. The 
contributions to the side force may come mainly from the aerodynamic forces acting 
on the vertical control surfaces and the aeroplane body. The situation resembles 
closely the case of the turning of a fish in water studied here. The point to be noted 
is due to the difference in densities of the air and water. The small density of air (com- 
pared with the average density of the aeroplane body) makes the flat turn less impor- 
tant in flight. It is considered that the flat turn becomes important for directional 
control in water since the lift force balancing the weight of the body almost vanishes. 
It may be interesting to compare this motion with the motion of a solid in a vacuum 
which is acted on by an impulsive lateral force to the right at  the rear end during its 
uniform motion. The subsequent motions of the centre of mass of the body would be 
quite different: the motion in the vacuum would be to the right, while that in water 
would be to the left. 

The stability analysis in this section has shown that the (yawing) motion in the X ,  Y 
plane is stable if g < 1.086 for case A ( E  = 1) .  However this does not imply stability to 
motion in the 2 direction (pitching motion). Simultaneous stabilization of both types 
of motion seems to be impossible, so that when the cross-sections are of the shape 
stable to yawing motion some additional organs will be required in order to ensure 
stability to pitching motions. 

Harris (1 936) studied the action of the fins of a typical shark in producing statically 
stable forward motion. He found that the yawing equilibrium of the shark is con- 
trolled almost entirely by the median fins, whose function has been considered in the 
present paper in the context of the ribbon-fins, while the pitching equilibrium is 
largely dependent on the configuration of the paired fins, and is scarcely affected by 
the presence or absence of the median fins. 

In  some fishes, e.g. scombrids, one finds another type of stabilizer whose position 
and function seem quite similar to those of the horizontal stabilizer of an aeroplane. 
This organ, called the ‘keel’, lies on both sides of the peduncle (point of minimum 
depth). The tunnyfish has a pair of fleshy keels in the horizontal plane including the 
longitudinal body axis, while the speaifish has two pairs of fleshy keels above and 
below this plane, both fishes being strong, active swimmers. Although the total area 
So of the fleshy keel’s planform is small, its stabilizing pitching moment is considered 
to be sufficient owing to its considerable dist,ance I, from the centre of mms and the 
high swimming speed U,, since the moment would be approximately proportional to 
I,S, U:. A rough estimate of the ratio of the total keel area So to the dorso-ventral 
projected area of the whole body in a tunnyfish is 0-02. Interestingly enough, the 
corresponding ratio of the total area of the horizontal surfaces (stabilizers) at the 
posterior end of a Japanese submarine (at the time of World War 11; see Plans of Ships 
of the Imperial Japanese Navy, SOC. Naval Archit. Japan, 1975) to its projected area 
in the horizontal plane is around 0.03. 
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